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Introduction

I recently prepared a report entitled “Under-reporting of Fire Starts” for
United Energy. In that report I apply a probability model for underreport-
ing to the United Energy dataset. Based on that model I estimate the actual
number of fire starts from 2006-2010 to be 940, higher than the recorded
number of 561. I have been asked by the Australian Energy Regulator
to prepare some supporting material so that they can consider my report.
The material requested is given below. I would be very happy to answer
any questions about the report or this document. I can be contacted at
neil.diamond@monash.edu.

Summary of supporting research and analysis

Literature Review and Theoretical Considerations

The material below is a summary of the published paper by Neubauer, G.,
Djuras, G., and Fiedl, H. (2011), on which my analysis is based.

Assume yt, t = 1, . . . , T are a sample of fire starts that are reported
at time t and that each time there are the same unknown number λ of
fire starts that actually happened. For each fire start a random mechanism
decides whether it is reported or not i.e. there is a constant probability π of
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reporting the fire start. Here we have a a random Bernoulli variable1

Ri =

{
1 if fire start reported
0 if fire start not reported

so that

Yt = Actual Number of Fire Starts =
λ∑

i=1

Ri ∼ binomial(λ, π)

Note that

E(Yt) = μ = λπ

V ar(Yt) = μ(1− π) = μφ, 0 ≤ φ ≤ 1.

More realistically E(Yt) = μt = λtπ is allowed to vary with

λt(β) = exp(xtβ)

where x corresponds to explanatory variables. (For example, I have used
mean maximum temperature and total monthly rainfall in the previous month).
The Likelihood is given by

L(α, β|yt, xt) =

(
λt(β)

yt

)
π(α)yt(1− π(α))λt(β)−yt

This model is not appropriate because V ar(Yt) ≤ μt.
Possible models that would be appropriate include those that allow either

λ to vary (over and above the variation due to the variation in the explanatory
variables) or to allow π to vary. In the next section some of these models
will be outlined.

Allowing π to have a distribution

If we allow π to vary then Yt|P ∼ binomial(λ, p) and P ∼ beta(γ, δ). We
then obtain the beta-binomial distribution as the marginal distribution of Yt.
Note that

V ar(Yt) = μ(1− π)(λ+ γ + δ)/(1 + γ + δ) = μφ, φ > 0.

1Details of the various probability distributions used are given in the Appendix.
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A re-parameterisation is used with θ = γ + δ and π = γ/δ and with λt(β) =
exp(xTβ) and π(α) = exp(α)/[1+exp(α)], the profile likelihood contribution
is

L(α, β|yt, xt, θ) =

(
λt(β)

yt

)B(yt + π(α)θ, λt(β)− yt + (1− π(α))θ)

B(π(α)θ, (1− π(α))θ)

where B is the beta function and γ(α) = π(α)θ and δ(α) = (1 − π(α))θ.
Maximum Likelihood of α and β given θ is performed and the Method of
Moments2 is used to estimate θ given α and β.

I show that this model is not as good as the reported model later in this
document.

Allowing λ to have a distribution

Alternatively, Yt|L ∼ binomial(l, π) and L ∼ Poisson(λ) and then Yt ∼
Poisson(λπ) with V ar(Yt) = μ i.e φ = 1. Allowing randomness in λ, Lt|K ∼
Poisson(kλt) and assuming K ∼ Gamma(ω, ω) we obtain a negative binomial
distribution with parameters ω (but in this case ω is the expected number
of unreported cases) and π. Here

V ar(Yt) = E(Yt) + E(Yt)
2/ω = μφ φ ≥ 1.

With ωt(β) = exp(xTβ) and π(α) = exp(α)/(1 + exp(α)), the Likelihood
contribution is (

ωt(β) + yt − 1

yt

)
π(α)yt(1− π(α))ωt(β).

I show that this model is not as good as the reported model later in this
document.

Let Y be a discrete random variable, taking only non-negative values.
Y follows a generalised Poisson distribution if its probability distribution
function is given by:

p(y|θ, τ) =
{

(1/y!))θ(θ + yτ)y−1e−θ−yτ y = 0, 1, 2, . . .
0 if y > m, when τ < 0

2Estimation based on equating the sample mean and variance to the population mean
and variance.
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where θ > 0, max(−1,−θ/m) < τ , and m(≥ 4) is the largest integer such
that θ +mτ > 0. Note

E(Y ) = θ(1− τ)−1

V ar(Y ) = θ(1− τ)−3

Note that the θ parameter used for the generalised Poisson has a different
meaning to the θ parameter used for the β distribution discussed in the
previous section.

Neubauer et al (2011) use a result that the generalised Poisson distribu-
tion is “equivalent” to a binomial distribution if τ < 0, equivalent to a Poisson
distribution if τ = 0, and “equivalent” to a negative binomial distribution3 if
τ > 0. Equating the moments of the Negative Binomial distribution to the
generalised Poisson distribution π = 1−(1−τ)2 and λt = θt(β)π

−1(1−π)−1/2

where θt(β) = exp(xTβ). Finally, to ensure the mean is positive τ is trans-
formed to α with τ(α) = 1 − exp(−α). The likelihood function is given
by

L(α, β|yt, xt) =
θt(β)[θt(β) + yτ(β) + yτ(α)]y−1 exp[−(−θt(β) + yτ(α))]

y!
.

The estimated value of τ is positive and hence the model is equivalent (or
almost equivalent) to a negative binomial distribution. The reported model
corresponds to this case of a generalised Poisson distribution.

Allowing both π and λ to have a distribution

Neubauer et al (2011) also use a model where both π and λ have a distribu-
tion resulting in a beta-Poisson distribution. I have been unable to get the
maximum likelihood estimation of this model to converge.

Other Literature

During the preparation of the report I consulted a number of related papers:
In one of the earliest papers on modelling under-reporting, Winkelmann

(1996) used Markov Chain Monte Carlo rather than likelihood methods to
estimate the parameters. He used it to study workers’ absenteeism data

3While the equivalence is exact if τ is zero, it is only approximate, but very close, when
τ �= 0.
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from the German Socio-Economic Panel. This method is quite an attractive
option and I considered using it, but I preferred to use a more recent article.

Fader and Hardie (2000) derived analytical expressions for the posterior
distributions for a simple model where the count process does not depend on
explanatory variables. The results are interesting but not directly applicable
in the present context.

Hubert, Lauretto, and Stern (2009) give a good description of the Gen-
eralised Poisson Distribution (2009).

Source Data, Program Codes, and Output Files

Source Date

The source data is given in “UEcomparisonCFAvMFBTFisher.csv”. In addi-
tion the MoreMoorabbinMeanMax.csv and MoreMoorabbinRainfall.csv files
were used. The rainfall for December 2005 was 81.4 mm.

Program Codes and Output Files

The Program Code is given in firestartsnegbinom.Rnw, which contains the
text and R code used in the report. To use it you need to Sweave the report.
The R Code itself is in firestartsnegbinom.R. The Output is given below.

> ### R code from vignette source ’firestartsnegbinom.Rnw’

>

> ###################################################

> ### code chunk number 1: firestartsnegbinom.Rnw:116-132

> ###################################################

> setwd("\\\\ad.monash.edu/buseco/b01users02/diamond/Documents/

Stat Consulting/Statistical Consulting/Rothfield/firestarts")

> set.seed(020256)

> require(foreign)

> require(MASS)

> ###United Energy Data

> fire <- read.csv("UEcomparisonCFAvMFBTFisher.csv",header=T,sep=",")

> fire$Date <- chron(as.character(fire$Date),format=list(dates="d/m/y"),

+ out.format=list(dates="d/m/y"))

> numbfirestarts <- table(cut(fire$Date,"months"))
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> numbfirestarts

Jan 06 Feb 06 Mar 06 Apr 06 May 06 Jun 06 Jul 06 Aug 06 Sep 06 Oct 06 Nov 06 Dec 0

13 9 5 6 5 1 4 2 4 19 10 3

Feb 07 Mar 07 Apr 07 May 07 Jun 07 Jul 07 Aug 07 Sep 07 Oct 07 Nov 07 Dec 07 Jan 0

40 13 6 4 2 5 1 4 9 5 4 1

Mar 08 Apr 08 May 08 Jun 08 Jul 08 Aug 08 Sep 08 Oct 08 Nov 08 Dec 08 Jan 09 Feb 0

10 5 4 6 6 5 3 2 14 7 26 4

Apr 09 May 09 Jun 09 Jul 09 Aug 09 Sep 09 Oct 09 Nov 09 Dec 09 Jan 10 Feb 10 Mar 1

10 6 3 2 7 6 2 3 6 10 18

May 10 Jun 10 Jul 10 Aug 10 Sep 10 Oct 10 Nov 10 Dec 10

6 4 4 5 5 4 6 10

> ###################################################

> ### code chunk number 2: firestartsnegbinom.Rnw:143-144

> ###################################################

> plot(numbfirestarts,xlab="Month",ylab="Recorded Number of Fire Starts")

>

>

> ###################################################

> ### code chunk number 3: model2

> ###################################################

> temperature <- as.numeric(unlist(strsplit(

readLines("MoreMoorabbinMeanMax.csv")[-c(1:11,17)],

+ split=","))[-c(1,14,15,28,29,42,43,56,57,70)])

> temperature

[1] 27.4 24.8 25.1 18.3 15.7 13.5 14.1 15.7 18.6 21.0 22.0 25.0 27.0 28.8 25.4 22

[18] 13.3 13.5 16.3 17.9 20.5 23.2 26.2 27.1 24.1 26.5 20.3 16.7 15.3 13.7 13.7 18

[35] 22.3 22.2 27.8 27.3 23.7 20.0 16.6 15.0 14.5 16.0 17.7 18.8 25.7 24.8 26.4 27

[52] 21.9 17.1 13.8 13.7 13.6 15.1 19.3 22.1 23.5

> rainfall <- as.numeric(unlist(strsplit(readLines(

"MoreMoorabbinRainfall.csv")[-c(1:7,13)],

+ split=","))[-c(1,14,15,28,29,42,43,56,57,70)])

> rainfall

[1] 46.0 80.2 18.4 77.4 63.2 14.0 35.4 35.0 25.6 7.4 24.6 44.6 28.6

[15] 40.8 16.8 50.8 56.0 78.0 26.0 26.4 27.4 73.6 127.2 15.0 26.0 25.4

[29] 44.4 40.6 62.8 61.8 24.8 18.2 50.6 69.2 1.6 1.6 40.6 70.6 17.6

[43] 66.0 48.4 73.6 59.0 81.8 34.4 46.0 32.4 58.4 65.4 40.8 72.6 25.2

[57] 57.2 163.6 113.2 111.2
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> lagrainfall <- rep(0,60)

> lagrainfall[1] <- 81.4

> for (i in 2:60){lagrainfall[i] <- rainfall[i-1]}

>

> mylogl <- function(alphabeta,y=numbfirestarts){

+ thetabeta <- exp(alphabeta[2]+alphabeta[3]*(temperature-mean(temperature))+

+ alphabeta[4]*log(lagrainfall/mean(lagrainfall)))

+ taualpha <- 1-exp(-alphabeta[1])

+ (log(thetabeta)+(y-1)*log(thetabeta+y*taualpha)-

+ (thetabeta+y*taualpha)-log(factorial(y)))

+ }

> require(maxLik)

> test <- maxLik(mylogl,start=c(0,1.93,0.12,-0.28))

> summary(test)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 6 iterations

Return code 1: gradient close to zero

Log-Likelihood: -167.1823

4 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 0.453977 0.102387 4.4339 9.254e-06 ***

[2,] 1.481167 0.108112 13.7002 < 2.2e-16 ***

[3,] 0.110620 0.016081 6.8789 6.033e-12 ***

[4,] -0.337236 0.054588 -6.1779 6.496e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

--------------------------------------------

> ptest <- 1-(1-(1-exp(-test$estimate[1])))^2

> ptest

[1] 0.5966518

> varcov1 <- solve(-test$hessian)

> varcov1

[,1] [,2] [,3] [,4]

[1,] 0.0104831906 -0.0075565369 -0.0004182572 0.0003037887

[2,] -0.0075565369 0.0116882938 -0.0001411038 0.0013523018

[3,] -0.0004182572 -0.0001411038 0.0002586012 0.0001705260
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[4,] 0.0003037887 0.0013523018 0.0001705260 0.0029798024

> testsim <- mvrnorm(1000,test$estimate,solve(-test$hessian))

> testsim <- cbind(testsim,1-(1-(1-exp(-testsim[,1])))^2)

> write.csv(testsim,"testsim.csv")

> ptestsim <- 1-(1-(1-exp(-testsim[,1])))^2

> summary(ptestsim)

> numbsim <- matrix(0,1000,60)

> for(i in 1:1000){for(j in 1:60){

+ numbsim[i,j] <- exp(testsim[i,2]+

+ testsim[i,3]*(temperature[j]-mean(temperature))+

+ testsim[i,4]*log(lagrainfall[j]/mean(lagrainfall)))/

+ (testsim[i,5]*sqrt(1-testsim[i,5]))

+ }}

> write.csv(numbsim,"numbsim.csv")

> estnumb <- round(sum(exp(test$estimate[2]+test$estimate[3]*

(temperature-mean(temperature))+

+ test$estimate[4]*(log(lagrainfall/mean(lagrainfall))))/(ptest*sqrt(1-ptest))))

> estnumb

[1] 940

>

>

>

> ###################################################

> ### code chunk number 4: firestartsnegbinom.Rnw:249-250

> ###################################################

> summary(test)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 6 iterations

Return code 1: gradient close to zero

Log-Likelihood: -167.1823

4 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 0.453977 0.102387 4.4339 9.254e-06 ***

[2,] 1.481167 0.108112 13.7002 < 2.2e-16 ***

[3,] 0.110620 0.016081 6.8789 6.033e-12 ***

[4,] -0.337236 0.054588 -6.1779 6.496e-10 ***
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

--------------------------------------------

>

>

> ###################################################

> ### code chunk number 5: firestartsnegbinom.Rnw:261-271

> ###################################################

> plot(numbfirestarts,xlab="Month",ylab="Number of Fire Starts",ylim=c(0,80))

> lines(1:60+0.25,(exp(test$estimate[2]+test$estimate[3]*

(temperature-mean(temperature))+

+ test$estimate[4]*(log(lagrainfall/mean(lagrainfall))))/

(sqrt(1-ptest))),col=2,lwd=2)

> points(1:60+0.25,(exp(test$estimate[2]+test$estimate[3]*

(temperature-mean(temperature))+

+ test$estimate[4]*(log(lagrainfall/mean(lagrainfall))))/

(sqrt(1-ptest))),col=2,pch=16)

> lines(1:60+0.25,(exp(test$estimate[2]+test$estimate[3]*

(temperature-mean(temperature))+

+ test$estimate[4]*(log(lagrainfall/mean(lagrainfall))))/

(ptest*sqrt(1-ptest))),col=4,lwd=2)

> points(1:60+0.25,(exp(test$estimate[2]+test$estimate[3]*

(temperature-mean(temperature))+

+ test$estimate[4]*(log(lagrainfall/mean(lagrainfall))))/

(ptest*sqrt(1-ptest))),col=4,pch=16)

>

>

>

> ###################################################

> ### code chunk number 6: firestartsnegbinom.Rnw:291-292

> ###################################################

> hist(1-(1-(1-exp(-testsim[,1])))^2,

xlab="Probability Fire Start reported",main="")

>

>

> ###################################################

> ### code chunk number 7: firestartsnegbinom.Rnw:301-303

> ###################################################
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> hist(apply(numbsim,1,"sum"),breaks=seq(500,2000,50),

xlab="Number of Fire Starts (Reported and Unreported)",

main="")

> abline(v=561,col=2)

>

See also testsim.csv for the 1000 simulations used to construct the
confidence intervals; and ptestsim.csv and numbsim.csv for the estimated
reporting frequency and number of estimated fire starts for each simulation.

Choice of statistical models

I fitted three main models while preparing my report: the beta-binomial and
the (usually defined) negative binomial distribution model and the gener-
alised Poisson model. I compared them on the basis of the Bayesian Infor-
mation Criterion

BIC = −2Maximum(Log-Likelihood) + k log(n)

where k = Number of Parameters and n = Number of Data Points. The
model with the smallest BIC is the preferred model.

I found the beta-binomial model quite difficult to fit as there is an implied
constraint that both parameters in the Beta function need to be positive. The
profile likelihood depends on θ. The best value of θ, obtained by trial and
error, was θ = 2.95.

> mylog3 <- function(alphabeta,y=numbfirestarts,theta=2.95){

+ lambdabeta <- exp(alphabeta[2]+alphabeta[3]*(temperature-mean(temperature))+

+ alphabeta[4]*log(lagrainfall/mean(lagrainfall)))

+ pialpha <- exp(alphabeta[1])/(1+exp(alphabeta[1]))

+ lchoose(lambdabeta,y)+

+ lbeta(y+rep(pialpha*theta,60),lambdabeta-y+rep((1-pialpha)*theta,60))-

+ lbeta(pialpha*theta,(1-pialpha)*theta)

+ }

> test3 <- maxLik(mylog3,start=c(0.3,7,0.2,-0.3),method="BFGS")

> summary(test3)

--------------------------------------------

Maximum Likelihood estimation

BFGS maximisation, 94 iterations
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Return code 0: successful convergence

Log-Likelihood: -167.9604

4 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] -0.061397 0.175587 -0.3497 0.726590

[2,] 2.661585 0.061459 43.3070 < 2.2e-16 ***

[3,] 0.144232 0.013345 10.8075 < 2.2e-16 ***

[4,] -0.417724 0.137845 -3.0304 0.002442 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

--------------------------------------------

The BIC for this model is 352.30, which is higher than that for the gener-
alised Poisson model, and hence the generalised Poisson model is preferred.

An alternative model is based on the negative-binomial distribution as
usually defined, as distinct from the generalised Poisson distribution. The
fitting of this model was straightforward compared to the beta binomial
model. The code and results are given below:

> mylog2 <- function(alphabeta,y=numbfirestarts){

+ omegabeta <- exp(alphabeta[2]+alphabeta[3]*(temperature-mean(temperature))+

+ alphabeta[4]*log(lagrainfall/mean(lagrainfall)))

+ pialpha <- exp(alphabeta[1])/(1+exp(alphabeta[1]))

+ lchoose(omegabeta+y-1,y)+y*log(pialpha)+omegabeta*log(1-pialpha)

+ }

> test2 <- maxLik(mylog2,start=c(0.3,1.6,0.12,-0.33))

> summary(test2)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 3 iterations

Return code 2: successive function values within tolerance limit

Log-Likelihood: -167.5509

4 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 0.318390 0.325212 0.9790 0.3276
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[2,] 1.610473 0.311671 5.1672 2.376e-07 ***

[3,] 0.112942 0.015793 7.1516 8.575e-13 ***

[4,] -0.337413 0.053345 -6.3251 2.531e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

--------------------------------------------

The BIC of the generalised Poisson model given in the report4 was 350.742
while the BIC of the negative binomial model was 351.479. Hence the gen-
eralised Poisson model is the preferred model.

Regression parameters and regression model specification

The reported number of fire starts has a marked seasonal pattern so it was
necessary to either incorporate seasonal dummy variables or explanatory vari-
ables that have such a pattern. The mean maximum temperature was an
obvious choice. In addition, monthly rainfall was also used. Some experi-
mentation showed that the maximal correlation occurred when the monthly
rainfall was lagged one month i.e. when it was used as a leading indicator.

The model fits the data reasonably well, but does not fully capture the
number of fire starts over the 2006/2007 summer period. All the parameters
are statistically significant and the signs are sensible-that is the number of
estimated fire starts increases with increases in temperature and decreases
with increases in total monthly rainfall in the previous month.

Estimation method

The model was fitted by maximum likelihood which is the standard method
for estimating parameters of complex statistical models. The likelihood of a
set of parameter values given the observed data is equal to the probability of
those observed outcomes given the parameter values. More likely parameter
values will have a higher likelihood than less likely parameter values. The
method of maximum likelihood chooses the set of parameter values which

4The previous report was titled “Under-reporting of fire starts” and was submitted to
the AER on 20th November 2011. Table 1 of that document shows the results from a
fitted negative binomial model. Those results were actually obtained from a generalised
Poisson model. However, as explained earlier in this explanatory note, in the section on
“allowing λ to have a distribution”, the negative binomial distribution is approximately
equal to a generalised Poisson distribution under certain conditions.

12



has the highest likelihood. The method is iterative and requires starting
values, although I’ve used various starting values and got the same maximum
value for the reported model. The negative of the inverse of the matrix
of second derivatives gives an estimated variance covariance matrix from
which standard errors of the estimated parameters can be determined. Both
the estimated probability of reporting a fire start and the estimated actual
number of fire starts is a non-linear function of the estimated parameters.
Standard errors could be computed using the Delta method but I prefer
to use the essentially equivalent simulation method which also captures the
non-symmetric nature of the estimation distribution-the estimated reporting
probability is skewed to the left, while the estimated actual number of fire
starts is skewed to the right. It should be noted that the confidence intervals
are predicated on the selected model being the correct one.

Other Considerations

In a report I am currently finalising I use Capture-Mark-Recapture methods
to estimate the number of United Energy fire starts over the period 2006-
2010. I obtain a higher estimate of the number of fire starts with the Capture-
Mark-Recapture method than using the modelling approach. It is arguable
that the Capture-Mark-Recapture method is a stronger method than the
modelling approach, since at least two lists are involved rather than one.
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Appendix: Probability Distributions

Distribution Probability Function Range Mean Variance
Bernoulii π(1− π) 0, 1 π π(1− π)

binomial
(
n
y

)
πy(1− π)n−y 0, 1, . . . , n nπ np(1− p)

beta πγ−1(1−π)δ−1

B(γ,δ) 0 < π < 1 γ
γ+δ

γδ
(γ+δ)2(γ+δ+1)

γ, δ > 1

beta-binomial
(
λ
y

)B(y+γ,λ−y+δ)
B(γ,δ) 0, 1, . . . , λ μ = λγ

γ+δ
μδ

α+β
λ+γ+δ
1+γ+δ

Poisson e−λλy

y!
y = 0, 1, . . . λ λ

Gamma yα−1βαe−βy

Γ(α)
y > 0 α

β
α
β2

α, β > 0

Negative Binomial
(
y+r−1
r−1

)
πr(1− π)y y = 0, 1, . . . r(1−π)

π
r(1−π)

π2

Generalised Poisson

{
(1/y!))θ(θ + yτ)y−1e−θ−yτ

0
y=0,1,. . .
if y > m, when τ < 0

θ(1− τ)−1 θ(1− τ)−3

Table 1: Details of Probability Functions used in this Document
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